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Computationally determined existence and stability of transverse structures.
II. Multipeaked cavity solitons

J. M. McSloy,* W. J. Firth,† G. K. Harkness, and G.-L. Oppo‡

Department of Physics, University of Strathclyde, 107 Rottenrow, Glasgow G4 ONG, Scotland
~Received 31 May 2002; published 10 October 2002!

We apply quasi-exact numerical techniques to the calculation of stationary one- and two-dimensional, bound
multipeaked cavity soliton solutions of a model describing a saturable absorber in a driven optical cavity. We
calculate the existence and stability domains of a wide range of such states and determine the perturbative
eigenmodes that cause loss of stability. We relate the existence ofN-peaked states to the locking range between
patterned and homogeneous solutions, as a function of two parameters.
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I. INTRODUCTION

In the first paper@1#, we presented a widely applicab
Fourier-transform based, numerical technique for the de
mination of the existence and stability of stationary perio
patterns in a driven optical cavity containing a saturable
sorber. Such solutions were characterized by their w
number and the background intensity from which th
emerge, or with which they compete. We computed th
domains of stability and instability. In particular, we foun
that hexagonal patterns may ‘‘crack,’’ breaking up into d
tinct islands of pattern interspersed with patches of the
mogeneous solution. Such islands may contain only a
pattern elements, so that they might be considered to be c
ters of solitary waves~cavity solitons! @2#. Such solitons, and
their composites, are the primary topic of this second pa

Potential applications of spatial solitons in technology
under investigation@3#. Cavity solitons are a distinct type o
dissipative spatial soliton, namely individually addressa
and steerable self-localized spots of light in an externa
pumped optical cavity@4#. These structures have been pr
posed as pixel elements for an all optical memory, para
and image processing@5–12#, and for use in optical buffer-
ing @11,18#. Confinement and manipulation of small particl
@13#, is an interesting non-IT application. Applications inte
est has been heightened with the observation of cavity s
tons in semiconductor microcavities. These cavity solito
have diameters of around 10mm, evolve on and nanosecon
time scales or less, and can be moved transversally at sp
in excess of 100 m s21 @14,15#.

Models based on a variety of nonlinear media@14,16–18#
now been shown to support cavity solitons. Dissipative s
tons in half cavity or feedback systems@12,20,21# have very
similar properties to cavity solitons, and the term ‘‘cavi
soliton’’ can be extended to imply such structures also. E
perimental observations have been made in both slow@18–
21# and fast@22# systems. Cavity solitons exist in a simpl
but yet phenomenologically rich, model describing a sa
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rable absorber within a driven cavity@7#. This system has
also been shown to allow roll, hexagon and honeycomb p
terned solutions stable over a wide range of wave vec
@1,23,24#. With the addition of Fourier feedback contro
square patterns have been stablized@25#.

Given this diversity of nonlinear spatial structures, it
hardly surprising that within our model there exist regions
parameter space which support both cavity solitons
higher-order solitonic structures. Multipeaked stationa
states have been shown to exist in one dimension in an
driven nonlinear Schro¨dinger equation@26# and quintic
Ginzburg-Landau equation@27#, and there has also been
brief report of such structures in the present model~limited
to one spatial dimension! @31#.

In this paper, we present a detailed study of station
multipeaked cavity soliton~CS! solutions in the above-
mentioned two-level saturable absorber model~Sec. II!. In
Sec. III we present efficient and powerful numerical tec
niques to calculate these steady states and their stability.
tensive numerical analysis is performed in both a o
dimensional~1D! ~Sec. IV! and the full two-dimensiona
~2D! model ~Sec. V!. We investigate such stationary stru
tures as a function of two parameters. The stability of th
solutions is calculated and respective eigenmodes de
mined. Finally we relate the existence domains of families
multipeaked CS to ‘‘locking’’ of fronts between the homog
neous solution and a coexistent subcritical pattern@28,29#.
We track across a two-dimensional parameter space
saddle-node bifurcations at whichN-peaked structures
emerge, and compare the sequence and spacing of thes
furcations with analytical predictions@29#. We also consider,
in both 1D and 2D, the ‘‘locking range’’ of individual struc
tures, namely that in which they are stable against both
pansion and shrinkage. At the former boundary, the struc
invades the homogeneous background on which it sits
create an extended pattern. At the latter, it shrinks and dis
pears, overcome by the dominance of the homogene
solution.

II. THE MODEL

We consider the same model as in Ref.@1#, viz. an on-
resonance two-level saturable absorbing medium in an ex
nally pumped optical cavity@30#. In this model, both linear
©2002 The American Physical Society06-1
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and nonlinear contributions to the atomic response are r
so that the medium does not have self-focusing or defocu
properties. Conventional~propagating! spatial solitons do
not, therefore exist in this medium. The spatiotemporal
namics of the slowly varying amplitude of the electroma
netic fieldE is modeled by

] tE52ES ~11 iu!1
2C

11uEu2
D 1EI1 i¹'

2 E, ~1!

whereu is the cavity mistuning of the intracavity resonan
from the pump frequency,C is the scaled atomic density an
so parametrizes both linear and nonlinear absorption,EI the
amplitude of the external pump field~considered a plane
wave!, and ¹'

2 is the transverse Laplacian]x
21]y

2 , which
models diffraction. The timet is scaled to the cavity respons
time. As is evident from the denominator of the nonline
term in Eq.~1!, the field scaling is such that the saturati
intensity of the transition corresponds touEu51.

As in Ref.@1#, it is convenient to express Eq.~1! in terms
of the deviation@A(x,y,t)# from the homogeneous solutio
(E0) throughE5(11A)E0. We thereby obtain an equiva
lent equation in which solitons sit on a zero background:

] tA52~11 iu!A1
2C

11uE0u2
2

2C~11A!

11uE0u2~11A!~11A* !

1 i¹'
2 A. ~2!

The intensityuE0u2 of the background field is taken to b
our primary control parameter. We use,~although it has no
direct physical meaning! the integral * uAu dxdy as a
positive-definite measure with which to characterize loc
ized solutions of Eq.~2!. This measure has advantages
easy display of the complicated bifurcation structure of m
tipeaked cavity solitons. If, e.g., the maximum ofuAu is plot-
ted, the solution branches overlie each other, as can be
in Ref. @31#.

III. NUMERICAL TECHNIQUES

Our numerical analysis of this system consists of th
algorithms which we solve on a computational mesh
1283128 gridpoints. The first directly integrates the sp
tiotemporal dynamics of Eq.~1! using a split-step operato
integrator, in which nonlinear terms are computed via
Runge-Kutta method and the Laplacian by a fast Fou
transform~FFT! @32#.

Our second algorithm is an enhanced Newton-Raph
method that can find all stable and unstable stationary s
tions to Eq.~2! when ]At50. A Newton-FFT method has
previously been used@14,17,31#, for evaluation of the¹'

2

operator, but solution of the resultant dense matrix is co
putationally intensive, especially in two spatial dimensio
To overcome this problem, here we evaluate this spatial
erator using finite differences, hence obtaining a Jacob
matrix that can be inverted easily using sparse numeric
brary routines. As an extension to this algorithm we used
automated variable step Powell enhancement to the New
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Raphson method@32,33#, allowing it to be quasiglobally
convergent, thus giving our algorithm very low sensitivity
initial conditions. All stationary, periodic or nonperiodic so
lutions of Eq. ~2! in one and two spatial dimensions ca
hence be solved on millisecond and second time sc
~simulations were run on SGI, Origin 300 servers with 5
MHz R14000 processors!, respectively with additional
speedup obtainable via OpenMP parallelization.

The third algorithm is used to determine the stability
stationary structures from our Newton algorithm. It is
sparse finite-difference algorithm based on the ‘‘Implicit
Restarted Arnoldi Iteration’’ method developed in Re
@34,35#. We use this algorithm to solveĴj5lj, whereĴ is
the Jacobian of derivatives of the solution in question,
roots l are its eigenvalues andj the corresponding eigen
modes. This allows us to calculate the eigenspectrum
matter of seconds/minutes~1D/2D! with approximately lin-
ear speed-up achievable across multiple processors via
parallelization~hardware as above!. Although in this work
these methods are applied to the solution ofĴ with rank
32 768, we have used them efficiently whenĴ has rank
>262 144, and they could easily be modified to calcul
stationary solutions and stability offully three-dimensional
problems.

IV. ONE-DIMENSIONAL STATIONARY STATES

To simplify our presentation and numerical analysis
work with a pump of homogeneous transverse profile. T
plane-wave solution to Eq.~1! has an absorptive optical bi
stability ~OB! threshold atC54 and u50, where uE0u2
53. Increasinguuu increases the OB threshold. For the bu
of our studies we chose parameters close to, but outside
OB domain so thatE0 is unique. These areC55.4, u5
21.2. For these parameters the homogeneous solution
hibits a modulational instability for input fieldEI5Emi

56.70 anduE0umi
2 51.657 @1#. This instability is subcritical,

as is essential for the existence of stable cavity solitons.
input field EI56.645 (uE0u251.33), single-peaked cavity
solitons exist over a range ofu ~Fig. 1!. Over this range of
detuning the cavity solitons are quite narrow, and well co
tained within the computational domain@Fig. 1~b!#. Varying

FIG. 1. ~a! The integral (* uAu dx) of single-peaked cavity soli-
tons versus the cavity mistuningu; ~b! Re(A) for cavity solitons on
upper branch of~a!: u521.2, solid line;u520.92, dashed line;
u520.63, dotted line.uE0u251.33, C55.4.
6-2



ty
na

s
n

ge
c
o

o

nch
-

t the
are

th at
. If
’
pe

ce
S

ven-
ce
at-

the
CS
on-

ym-
to

w.
so-
eir
ove.
l
all
ive-
en-

nly

th
ly

COMPUTATIONALLY DETERMINED . . . . II. . . . PHYSICAL REVIEW E66, 046606 ~2002!
E0 at fixed u521.2, it can be seen in Fig. 2 that cavi
soliton branches bifurcate subcritically at the modulatio
instability threshold.

The existence of multipeaked CS structures is shown
Fig. 2, in which their integral (* uAu dx) is plotted as a func-
tion of uE0u2. CS exist on two distinct yet similar branche
which correspond to structures with, respectively, odd a
even numbers of peaks. Both bifurcate from the homo
neous state at the point of modulational instability. Ea
branch, although continuous, is composed of numerous p
tive slope~upper! and negative slope~lower! sections, which
we will denote byG andL superscripts, respectively. We als
specify the ‘‘number of peaks’’~N! as the number which

FIG. 2. Integral of one-dimensional CS structures against
intracavity fielduE0u2. Solid, dotted, and dashed lines, respective
denote: stable CSN

G , unstable CSodd
L , and unstable CSeven

L solutions.
Parameters areu521.2 andC55.4.
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have amplitude at least equivalent to that of the lower-bra
solitary cavity solitonCS1

L at given input parameters. A se
quence of these solutions is presented in Fig. 3. Note tha
N peaks are ‘‘close packed.’’ As might be guessed, there
numerous other branches corresponding to structures wi
least one ‘‘gap’’ between adjacent large-amplitude peaks
we denote such a peak by ‘‘1,’’ and a minimal ‘‘gap’’ by ‘‘0,’
our close-packed CS structures are all of ty
‘‘ . . . .00011 . . . .111000 . . . ., ’’ which excludes e.g.
‘‘ . . . .0001101000 . . . . .’’ We will not examine such ‘‘open
structures’’ in detail, although we note that their existen
and stability is important in connection with the use of C
arrays as pixel or memory arrays@7,22,36#.

As N increases, the solutions get broader, and so are e
tually limited by the computational domain. In the absen
of such constraints, they become very similar to the roll p
terns described in Ref.@1#. Since acontinuumof patterns of
different wave vector are stable in this parameter region,
issue of the limiting peak separation of the multipeaked
is an interesting question. Another issue arises when we c
sider that additional peaks do not have to be added s
metrically. By adding peaks on only one side one limits
‘‘ . . . .00000111111 . . . . ,’’ which is not a roll pattern, but
coexistent roll and homogeneous patterns, with afront at the
border between them. These issues will be explored belo

Turning now to the dynamical properties of these CS
lutions, we have tested their stability by diagonalizing th
Jacobian, using the numerical methods mentioned ab
Discounting the neutral mode~see below! possessed by al
CS solutions, the stability results are rather simple, in that
positive-slope branches in Fig. 2 are stable, and all negat
slope branches unstable. More precisely, all nonzero eig
values of the Jacobian of a positive-slopeN-peak CS solution
are negative, so that it is anattractor, self-organizing from
any sufficiently-similar structure into the unique~at given
parameters! CS solution on its branch.

All negative-slope CS are unstable, they in fact have o

e
,

spond
FIG. 3. Sequences of profiles for odd~left! and even~right! CS branches shown in Fig. 2. Dash-dotted, solid, and dashed lines corre
to solutions atuE0u251.22, uE0u251.33, anduE0u251.44. Other parameters areu521.2 andC55.4.
6-3
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FIG. 4. Panel~a! shows the attractor nature of the lower-branch cavity soliton for CS1 structures and panel~b! for CS2 structures, for
differing address pulses. Panel~c! gives similar behavior for~peak 1! above and~peak 2! below the separatrix. Solid and dash-dotted lin
indicate two simulations in which peak 2 is ‘‘switched on’’ and where it relaxes to the side band of peak 1. The vertical dotted line
the address timet. Horizontal dotted and dashed lines, respectively, show CS1

G,L and CS2
G,L structures. Parameters areuE0u251.33, u5

21.2, andC55.4.
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one positive eigenvalue, and so all their internal degree
freedom except one are damped. Hence, as has been s
in Ref. @14#, the lowest branch CS, although unstable, b
haves as ametastableattractor for nearby states. Suppo
one attempts to create a stable upper branch CS with
incident address pulse of, say, Gaussian profile for a gi
time t. If the pulse is very weak, its effect will decay awa
and no CS will be created. Increasing the amplitude of
address pulse, one finds that the perturbation ‘‘hump’’ on
background field becomes longer lived, and also begin
resemble the lower-branch CS in shape. At this stage,
amplitudea of this hump becomes the only significant d
namical variable. If it remains less than that of the unsta
CS, the hump eventually decays back into the backgrou
and no stable CS is created as is seen below the lower-br
CS lines in Figs. 4~a! and 4~b! for an address beam suitab
spaced (2p/kc) with dual humps of similar amplitude. Ifa
exceeds the amplitude of the unstable CS, however, it c
tinues to grow~even after the address pulse is over!, and
eventually stabilizes as a stable upper branch single-pe
CS. In the critical range, wherea is very close to that of the
unstable CS, the dynamics slows down dramatically, wh
is why we consider the unstable CS to be metastable, ra
than just unstable. For higher pump values, the lower-bra
amplitude decreases~Fig. 2!, and it follows that the mini-
mum energy required to excite a soliton decreases~corre-
sponding experimentally to shorter address times or lo
powers @20#!. If, however, an asymmetric address pulse
applied similar to that used in Fig. 4~b! but with the second
peak of amplitude slightly below the lower-branch CS, int
esting results can be seen. The first peak, as expected,
grow towards the amplitude of CS1

G structure—see Fig. 4~c!.
The second peak, however, relaxes below the lower-bra
solutions, but due to the growth of the side bands of pe
one causes the structure to gain energy and move abov
amplitude of the lower-branch CS, that eventually evolves
a CSG. At the point of growth above the CSL peak one that
has been dwelling close to CSG slowly increases in ampli-
tude until the amplitudes of both peaks reach that of a C2

G

structure. If, however, the peak one does not grow quic
04660
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enough the peak two will relax to the side band of peak o
For the stable positive-slope CSN

G structures, all internal
modes are damped, and thus they usually have only one
fective degree of freedom, corresponding to the neutrall
50) eigenmode mentioned above. This mode, shown in F
5, is associated with the transverse translational symmetr
Eq. 2. Such translational~Goldstone! CS eigenmodes are
well documented@2,14,31,37#. The neutral mode, being o
odd parity, couples to any local gradient of, e.g., pump fi
amplitude or phase present at the location of the struct
The consequent excitation of the neutral mode implies t
CS move with a velocity proportional to the local gradie
@7,14#.

CS dynamics is more complex close to the end o
branch. We see that in one spatial dimension, lowering
uE0u2 causes aN-peaked upper branch cavity soliton CSN

G

initial condition ~panelsb and f ) to undergo a saddle-nod
bifurcation to a CSN22

L lower-branch structure~panelsa and
e) when uE0u2'1.20. At this saddle-node point the uppe
branch structure becomes unstable to an eigenmode of
given in Fig. 6. The structure then collapses into the hom
geneous background.

As the pumpuE0u2 is increased, side-peaks~diffraction
ripples! surrounding the main CS structure begin to gro
consistent with moving closer to the modulational instabil
threshold. Before this threshold is reached, however,

FIG. 5. Normalized neutral translational eigenmodes for C1
G

and CS2
G structures. Solid and dashed lines, respectively, den

Re(j) and Im(j). For both panelsuE0u251.33.
6-4
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COMPUTATIONALLY DETERMINED . . . . II. . . . PHYSICAL REVIEW E66, 046606 ~2002!
strongest ripples reach a critical amplitude, where they
velop a new CS peak on each side of the original struc
(uE0u2'1.46). This instability causes the structure to jum
to an unstable CSN12

L branch~panelsc andg of Fig. 3!, and
is a direct result of an eigenmodej of form shown in Fig. 7
becoming unstable at this saddle-node point, with a rea
genvaluel becoming positive.

This instability of the side bands is a consequence of th
powers exceeding that of the lower-branch soliton, which
mentioned earlier is aseparatrixand causes growth to a fu
soliton. Since the newly formed higher-order soliton ha
identical side bands, a chain reaction occurs until a roll p
tern is formed which fills the computational domain—as c
be seen in Fig. 8 panel~b!.

Thus we see that at one end of a CS branch, pattern d
nates over background, whereas at the other the backgr
dominates as the CS solutions collapse. Pomeau@28# consid-
ered the dynamics of the front between a roll pattern a
the coexistent homogeneous solution~symbolized by
‘‘ . . . .00000111111 . . . . ’’ in the Introduction!. He showed
that this front generically moves, i.e., there is a more sta
phase that annihilates the less stable one, but that there
be an intermediate region in which the two phases can st
coexist over a finite range of a given parameter.
this region the front ‘‘locks’’ and remains stationary. O
N-peaked CS solutions can be symbolized
‘‘ . . . .00011111 . . . .111110000 . . . ., ’’ which we can envis-
age as a pair of fronts ‘‘back-to-back.’’ This idea has be

FIG. 6. Normalized unstable eigenmodes for CS1
G and CS2

G

structures at left saddle-node bifurcation. Solid and dashed li
respectively, denote Re(j) and Im(j). Parameters:uE0u251.221
(CS1

G) and uE0u251.194 (CS2
G).

FIG. 7. Normalized unstable eigenmodes for CS1
G and CS2

G

structures at right saddle-node bifurcation. Solid and dashed li
respectively, denote Re(j) and Im(j). Parameters:uE0u251.464
(CS1

G) and uE0u251.447 (CS2
G).
04660
e-
re

i-

ir
s

e
t-
n

i-
nd

d

le
an
ly

s

n

given an analytical justification by Coulletet al. @29#. Within
the regions of stability of CSN

G structures we can thus talk o
locking in analogy with these analytical results@28,29#. From
the saddle-node bifurcations in Fig. 2 it is clear~and fortu-
nate from an applicational viewpoint! that high-order clusters
of cavity solitons can be stable over a finite range ofuE0u2.
Knowing the existence and stability properties of CS so
tions as functions ofuE0u2 for fixed u andC, we can add a
second dimension in parameter space, extending Fig
along u in the (uE0u2,u) plane, as shown in Fig. 8 fo
CS1,2,3,4

G,L structures. At the boundaries of these regions,
locking takes place due to the invasion of the homogene
solution into a patterned state or pattern into a homogene
state@see, panels~a! and~b! in Fig. 8#. The fine structure of
such locking domains is shown in panel~c!.

These solutions have stable and unstable multisectio
branches which connect through saddle-node bifurcatio
By analyzing these sections (CS1,2,3,4

G ) with u fixed, the value
of uE0u2 for each CSN

G structure at each saddle-node bifurc
tion point ~which we termmN) is determined. The values o

s,

s,

FIG. 8. Regions of existence limits 1D CSN
G structures~shaded

regions! in two-dimensional parameter space (uE0u2,u). Structures
with N51, 2, 3, and 4, respectively, exist between solid, dott
dashed, and dash-dotted lines. Panels~a! and ~b! show space-time
plots of unlocking behavior, with the transverse coordinatex on the
horizontal axis and timet increasing on the vertical axis. Panel~c!
shows the fine structure of locking domain, indicated by the squ
on the main figure. Parameters:C55.4.
6-5
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McSLOY, FIRTH, HARKNESS, AND OPPO PHYSICAL REVIEW E66, 046606 ~2002!
mN should obey a similar scaling principle to that presen
in Ref. @29# for localized structures in the Swift-Hohenbe
equation. For largeN this scaling is predicted to be geome
ric, i.e. given by

mN112mN5r ~mN2mN21!, ~3!

wherer is a constant. We can try to test this prediction, ov
a two-dimensional parameter space, against the data
our model presented in Fig. 8. We can report that the
quence of bifurcations is precisely as predicted in Ref.@29#,
and moreover, that this sequence is maintained along
section of the CS domain in Fig. 8. We cannot confirm
geometric scaling law, however, but cannot yet say whe
this is due to imprecision in our numerical data, to not ha
ing reached the asymptotic region ofN, or indeed to the
scaling law being invalid.

Fig. 8 shows the existence of a particularly interest
region in 1D parameter subspace, whereuE0u2'1.49. At
these parameters we obtain two separate ranges ofu in
which cavity solitons exist.

V. TWO-DIMENSIONAL STATIONARY STATES

Multipeaked cavity soliton structures in two dimensio
involve 2D interaction forces between neighboring solito
This feature has been studied recently in Ref.@2#, where the
stability of two-dimensional clusters of cavity solitons w
analyzed as a function of soliton separation. Stable sep
tions are determined by an effective potential created by
interaction of the diffraction ripples of theN cavity solitons,
which was found to be expressible as a sum of pair-w
potentials within the structure. In Ref.@2# the emphasis was
primarily on open clusters, because the interaction poten
is only asymptotically exact. Here, in a numerical analys
we only consider close-packed clusters, at the first sta
separation distance ofd'6.8 for CSN

G configurations, as
shown in Fig. 9. It should be noted that for CS4

G , square

FIG. 9. Stable CS1,2,3,4
G clusters found using our Newton algo

rithm in a physical domain of 48348 diffraction lengths on a com
putational mesh of 1283128 grid points. Parameters:uE0u251.33,
u521.2, andC55.4.
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configurations of sided are unstable due to diagonal intera
tions @see, Ref.@2##, and so forN54 we consider the rhom
boid of sided, which is stable.

Figure 10 shows the integral measure of the 2D CS so
tions with N51,2,3,4 close-packed peaks. There is a stro
qualitative similarity to the corresponding 1D plot~Fig. 2!,
but it should be noted that there is no known scaling law
2D structures to match that for 1D@29#. In this two-
dimensional model, the existence and stability domains
multipeaked cavity solitons in the (uE0u2,u) parameter space
are also quite similar to those found in our one-dimensio
analysis, and so we present only those for CS1

G , CS2
G , CS3

G

and CS7
G structures. These are shown in Fig. 11, again w

their existence domains extended. These stability dom
are important because of cavity mistuning and pumping
homogeneities present in experimental nonlinear media,
make it desirable to have large domains of stability. Wh
the structure of the overlaid domains in Fig. 11, are qual
tively similar to the 1D case, we again note that there is
analytic law with which to compare the bifurcation s
quences.

Panels~a! and~b! of Fig. 11, respectively, show 3D space
time plots of unlocking behavior, with the transverse coor
nates (x,y) on the vertical axis and timet on the horizontal
axis. In panel~a! a CS7

G becomes unstable to the invasion
the homogeneous solution into the structure, while in pa
~b! the opposite is true and the structure invades the hom
enous solution forming an extended optical pattern.

Mechanisms responsible for these unlocking characte
tics are of obvious importance. Starting from a solitary C1

L

structure we find that decreasing the pump has the effec
weakening the diffraction ripples surrounding the soliton.
the lower existence threshold (uE0u2'1.10) the structure be
comes unstable to an undamped eigenmode which cause
CS1

G structure to eventually relax into the homogenous sta

FIG. 10. Integral of two-dimensional CS structures against
external pumpuE0u2. Respectively denoted for ascending integ
values are solid CSN

G and broken CSN
L lines, whereN51,2,3,4. Pa-

rameters:u521.2 andC55.4.
6-6
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As in the 1D case, increasing the pump generates stro
diffraction ripples around the structures. If the pump is
creased to the upper existence threshold (uE0u2'1.52) the
primary ring splitsup into a periodically disturbed annulu
Unlike the one-dimensional analysis though, there are f
competing eigenmodes which become undamped at
point ~see Fig. 12!. These lead to the formation of six, fou
five, and seven modulated peaks around the primary diff
tion ring, as shown in panels~d!–~g!, respectively. The mode
with six-fold symmetry@panel~d!# is the dominant one, and
subsequently causes a bifurcation to an unstable CSN16

L so-
lution. This then evolves towards a hexagonal patterned s

FIG. 11. Locking regimes of hexagonal clusters of CS1
G ~solid/

light gray!, CS2
G ~dotted/gray!, CS3

G ~dashed/dark gray!, and CS7
G

~dot-dashed/black! structures, with respective existence indicat
by ~line style/fill shade!. Panels~a! and ~b! show the unlocking
dynamics of a CS7

G structure at amplitudeuEu51.5, with transverse
coordinates (x,y) on the vertical axis and timet increasing on the
horizontal axis. Respective intracavity field intensities areuE0u2

51.08 and 1.45 withu521.2 andC55.4.
04660
er
-

.
r
is

c-

te

as seen in Fig. 13, thus verifying the picture given in Fig.
panel ~b!. At the end of the existence branch (uE0u2
51.5326) anm50 eigenmode becomes undamped as p
dicted in Ref.@7#.

VI. CONCLUSIONS

We have applied powerful numerical techniques to e
ciently calculate one- and two-dimensional steady-state c
ity soliton solutions, and their stability. We demonstrat
these techniques in the context of a simple but rich nonlin
optics model, but they have wide applicability. These str
tures have been shown to exist in substantial regions o
two-dimensional parameter space, in separate bran
which bifurcate from the homogeneous background soluti
The stability and dynamics of the solutions on each bra
have been studied, and we have characterized their ei

FIG. 13. Dynamical evolution of CS1
G structure atuE0umax

2 . Pan-
els ~a!–~d!, respectively, give the fieldE at t50, t545, t580, and
t5400. Parameters:uE0u251.5326,u521.2, andC55.4.
FIG. 12. Eigenmodes plotted as a function ofuE0u2 for CS1
G structure. Respective eigenvalues for panels~b!–~g! are l50, 0,

3.731022, 3.531022, 1.731022, 1.531022. Parameters:uE0u251.53, u521.2, andC55.4.
6-7
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modes. We have identified the modes which become
damped at the saddle-node bifurcation marking the end
each branch~or subbranch!. We have also found the spatia
modes responsible for the formation of higher order so
tions. Finally we identified the overlaid domains in whic
one- and two-dimensional structures exist as stable ‘‘lock
solutions in a two-parameter space. In one dimension,
sequence of bifurcations at the boundaries of these dom
is in general agreement with an asymptotic analytic pred
tion. We obtained and discussed the corresponding seque
y,

,

J

,

,

li-

h,

04660
n-
of

-

’’
e

ins
-

ces

in two dimensions, for which no analytic formulas a
known.
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